Randomized Controlled Trial
. 2016 Jun 15;193(12):1401-9. doi: 10.1164/rccm.201510-2000OC.Affiliations
Item in Clipboard
Randomized Controlled Trial
Valtyr Thors et al. Am J Respir Crit Care Med . 2016 .
Free PMC article
. 2016 Jun 15;193(12):1401-9. doi: 10.1164/rccm.201510-2000OC.Item in Clipboard
Rationale: Viral infections of the upper respiratory tract may influence the commensal nasopharyngeal bacteria. Changes in the bacterial niche could affect transmission dynamics. Attenuated vaccine viruses can be used to investigate this empirically in humans.
Objectives: To study the effects of mild viral upper respiratory infections on nasopharyngeal bacterial colonization using live attenuated influenza vaccine (LAIV) as a surrogate.
Methods: We used trivalent LAIV to evaluate the effects of viral infection on bacterial carriage and density of Streptococcus pneumoniae, Moraxella catarrhalis, Haemophilus influenzae, and Staphylococcus aureus. A total of 151 healthy children were randomized 1:1 to receive the vaccine starting either at recruitment (n = 74) or 28 days later (n = 77) in a stepped wedge fashion, allowing comparisons between recipients and nonrecipients as well as whole-group comparisons pre- and postvaccination. Bacterial carriage and density were determined using quantitative polymerase chain reaction assays.
Measurements and main results: A total of 151 children were recruited, 77 in the LAIV group and 74 in the control group. LAIV recipients (n = 63 analyzed) showed an apparent transient increase in H. influenzae carriage but no further significant differences in carriage prevalence of the four bacterial species compared with controls (n = 72 analyzed). S. pneumoniae density was substantially higher in vaccine recipients (16,687 vs. 1935 gene copies per milliliter) 28 days after the first dose (P < 0.001). Whole-group multivariable analysis (prevaccine, after one dose, and after two doses) also showed increases in density of other species and H. influenzae carriage prevalence.
Conclusions: In the absence of any safety signals despite widespread use of the vaccine, these findings suggest that bacterial density, and thus transmission rates among children and to people in other age groups, may rise following attenuated influenza infections without associated clinical disease. LAIV could therefore be used as an experimental tool to elucidate the dynamics of transmission of nasopharyngeal bacteria.
Keywords: bacterial colonization; bacterial density; children; live attenuated influenza vaccine.
Figure 1.
Consolidated Standards of Reporting Trials…
Figure 1.
Consolidated Standards of Reporting Trials flow diagram of the study. LAIV = live…
Figure 1.Consolidated Standards of Reporting Trials flow diagram of the study. LAIV = live attenuated influenza vaccine.
Gordon S, Ferreira DM. Gordon S, et al. Am J Respir Crit Care Med. 2016 Jun 15;193(12):1329-30. doi: 10.1164/rccm.201601-0130ED. Am J Respir Crit Care Med. 2016. PMID: 27304239 No abstract available.
Peno C, Armitage EP, Clerc M, Balcazar Lopez C, Jagne YJ, Drammeh S, Jarju S, Sallah H, Senghore E, Lindsey BB, Camara J, Bah S, Mohammed NI, Dockrell DH, Kampmann B, Clarke E, Bogaert D, de Silva TI. Peno C, et al. Lancet Microbe. 2021 Dec;2(12):e656-e665. doi: 10.1016/S2666-5247(21)00179-8. Lancet Microbe. 2021. PMID: 34881370 Free PMC article. Clinical Trial.
Jourdain S, Smeesters PR, Denis O, Dramaix M, Sputael V, Malaviolle X, Van Melderen L, Vergison A. Jourdain S, et al. Clin Microbiol Infect. 2011 Jun;17(6):907-14. doi: 10.1111/j.1469-0691.2010.03410.x. Epub 2010 Dec 14. Clin Microbiol Infect. 2011. PMID: 20977542
Navne JE, Børresen ML, Slotved HC, Andersson M, Melbye M, Ladefoged K, Koch A. Navne JE, et al. Epidemiol Infect. 2016 Nov;144(15):3226-3236. doi: 10.1017/S0950268816001461. Epub 2016 Jul 13. Epidemiol Infect. 2016. PMID: 27405603 Free PMC article.
Mina MJ, McCullers JA, Klugman KP. Mina MJ, et al. mBio. 2014 Feb 18;5(1):e01040-13. doi: 10.1128/mBio.01040-13. mBio. 2014. PMID: 24549845 Free PMC article.
Kovács E, Sahin-Tóth J, Tóthpál A, van der Linden M, Tirczka T, Dobay O. Kovács E, et al. PLoS One. 2020 Feb 7;15(2):e0229021. doi: 10.1371/journal.pone.0229021. eCollection 2020. PLoS One. 2020. PMID: 32032364 Free PMC article.
Jones RP, Ponomarenko A. Jones RP, et al. Infect Dis Rep. 2022 Sep 23;14(5):710-758. doi: 10.3390/idr14050076. Infect Dis Rep. 2022. PMID: 36286197 Free PMC article. Review.
Peno C, Armitage EP, Clerc M, Balcazar Lopez C, Jagne YJ, Drammeh S, Jarju S, Sallah H, Senghore E, Lindsey BB, Camara J, Bah S, Mohammed NI, Dockrell DH, Kampmann B, Clarke E, Bogaert D, de Silva TI. Peno C, et al. Lancet Microbe. 2021 Dec;2(12):e656-e665. doi: 10.1016/S2666-5247(21)00179-8. Lancet Microbe. 2021. PMID: 34881370 Free PMC article. Clinical Trial.
Rowe HM, Rosch JW. Rowe HM, et al. mBio. 2021 May 18;12(3):e01027-21. doi: 10.1128/mBio.01027-21. mBio. 2021. PMID: 34006664 Free PMC article. Review.
Hales C, Jochems SP, Robinson R, Solórzano C, Carniel B, Pojar S, Reiné J, German EL, Nikolaou E, Mitsi E, Hyder-Wright AD, Hill H, Adler H, Connor V, Zaidi S, Lowe C, Fan X, Wang D, Gordon SB, Rylance J, Ferreira DM. Hales C, et al. Vaccine. 2020 Feb 28;38(10):2298-2306. doi: 10.1016/j.vaccine.2020.01.070. Epub 2020 Feb 5. Vaccine. 2020. PMID: 32035708 Free PMC article. Clinical Trial.
Rowe HM, Rosch JW. Rowe HM, et al. Bioessays. 2019 Dec;41(12):e1900128. doi: 10.1002/bies.201900128. Epub 2019 Nov 6. Bioessays. 2019. PMID: 31693223 Free PMC article. Review.